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1. Introduction

1.1. Research Objectives

As part of this research program we proposed the development of a network thermo-

dynamic stabilization framework for hybrid control design of large-scale and multiagent

aerospace systems. In particular, we concentrated on hybrid control, hierarchical control, im-

pulsive dynamical systems, nonnegative dynamical systems, compartmental systems, large-

scale systems, nonlinear switching control, cooperative control, and adaptive control. Appli-

cation areas include large flexible interconnected space structures, spacecraft stabilization,

cooperative control of unmanned air vehicles, network systems, swarms of air and space

vehicle formations, and pharmacological systems.

1.2. Overview of Research

Controls research by the Principal Investigator [1–45] has concentrated on network ther-

modynamics for large-scale and multiagent systems. In our research we used and are us-

ing these results to develop a coordination control framework for finite-time consensus and

parallel formation for multiagent systems with switching information topologies involving

state-dependent communication links for addressing communication link failures and com-

munication dropouts. In addition, a new neuroadaptive control architecture for nonlinear

uncertain dynamical systems is developed. The proposed framework involves a novel con-

troller architecture involving additional terms in the update laws that are constructed using a

moving time window of the integrated system uncertainty. These terms can be used to iden-

tify the ideal system weights of the neural network as well as effectively suppress and cancel

system uncertainty without the need for persistency of excitation. A nonlinear parametriza-

tion of the system uncertainty is considered and state and output feedback neuroadaptive

controllers are developed.

Semistable and finite-time semistable protocols for dynamical networks with switching

topologies are also developed. Specifically, we developed distributed static and dynamic out-

put feedback controller architectures for coordination control for finite-time consensus, ren-

dezvous, and parallel formation for multiagent systems with switching information topologies

involving state-dependent communication links for addressing communication link failures

and communication dropouts. In addition, using set-valued supply rate maps and set-valued

storage maps consisting of piecewise continuous storage functions, dissipativity properties for

discontinuous dynamical systems are presented. These results are used to develop feedback
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interconnection stability results for discontinuous systems by appropriately combining the

set-valued storage maps for the forward and feedback systems. Finally, we developed a new

and novel output feedback control framework for nonminimum phase multivariable systems

for output stabilization, command following, and disturbance rejection.

Modern complex large-scale dynamical systems exist in virtually every aspect of science

and engineering, and are associated with a wide variety of physical, technological, environ-

mental, and social phenomena, including aerospace, power, communications, and network

systems, to name just a few examples. As part of our research, we developed a general stabil-

ity analysis and control design framework for nonlinear large-scale interconnected dynamical

systems using vector Lyapunov function methods, vector dissipativity theory, and decentral-

ized control architectures. Specifically, we addressed continuous-time and hybrid large-scale

systems using finite-time decentralized control architectures, thermodynamic modeling, max-

imum entropy control, and energy-based decentralized control. In addition, we developed

a stability analysis and control design framework for time-varying sets of nonlinear time-

varying dynamical systems using vector Lyapunov functions. Using this framework, we

designed distributed control algorithms for multivehicle coordination. Finally, we developed

dissipativity notions for dynamical systems with discontinuous vector fields. In particular,

we introduce a generalized definition of dissipativity for discontinuous dynamical systems

with Lebesgue measurable and locally essentially bounded vector fields characterized by dif-

ferential inclusions involving Filippov set-valued maps specifying a set of directions for the

system velocity and admitting Filippov solutions with absolutely continuous curves. In fu-

ture research this framework will be used as a design tool for developing group coordination

algorithms for multiagent systems possessing a dynamic (i.e., switching) topology.

1.3. Goals of this Report

The main goal of this report is to summarize the progress achieved under the program

during the past three years. Since most of the technical results appeared or will soon appear

in over 45 archival journal and conference publications, we shall only summarize these results

and remark on their significance and interrelationship.

2. Description of Work Accomplished

The following partial research accomplishments have been completed over the past three

years.
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2.1. Semistability, Finite-Time Stability, Differential Inclusions,

and Discontinuous Dynamical Systems Having a Continuum

of Equilibria

Numerous engineering applications give rise to discontinuous dynamical systems. Specif-

ically, in impact mechanics the motion of a dynamical system is subject to velocity jumps

and force discontinuities leading to nonsmooth dynamical systems. In mechanical systems

subject to unilateral constraints on system positions, discontinuities occur naturally through

system-environment interaction. Alternatively, control of networks and control over networks

with dynamic topologies also give rise to discontinuous systems [12, 26]. In particular, link

failures or creations in network multiagent systems result in switchings of the communication

topology. In this case, the vector field defining the dynamical system is a discontinuous func-

tion of the state, and hence, system stability can be analyzed using nonsmooth Lyapunov

theory involving concepts such as weak and strong stability notions, differential inclusions,

and generalized gradients of locally Lipschitz continuous functions and proximal subdiffer-

entials of lower semicontinuous functions.

In many applications of discontinuous dynamical systems such as mechanical systems

having rigid-body modes, isospectral matrix dynamical systems, and consensus protocols for

dynamical networks, the system dynamics give rise to a continuum of equilibria. Under such

dynamics, the limiting system state achieved is not determined completely by the dynamics,

but depends on the initial system state as well. For such systems possessing a continuum of

equilibria, semistability [46], and not asymptotic stability, is the relevant notion of stability.

Semistability is the property whereby every trajectory that starts in a neighborhood of a

Lyapunov stable equilibrium converges to a (possibly different) Lyapunov stable equilibrium.

To address the stability analysis of discontinuous dynamical systems having a continuum

of equilibria, in this research [9,12,26] we extend the theory of semistability to discontinuous

time-invariant dynamical systems. In particular, we develop sufficient conditions to guaran-

tee weak and strong invariance of Fillipov solutions. Moreover, we present Lyapunov-based

tests for semistability of autonomous differential inclusions. In addition, we develop sufficient

conditions for finite-time semistability of autonomous discontinuous dynamical systems. Fu-

ture extensions will focus on using these results to develop a coordination control framework

for finite-time information consensus and parallel formation in dynamical networks with

switching topologies involving state-dependent communication links for addressing commu-

nication link failures and communication dropouts.
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2.2. Semistability of Switched Dynamical Systems

An essential feature of multiagent network systems is that these systems possess a con-

tinuum of equilibria [12]. Since every neighborhood of a nonisolated equilibrium contains

another equilibrium, a non-isolated equilibrium cannot be asymptotically stable. Hence,

asymptotic stability is not the appropriate notion of stability for systems having a contin-

uum of equilibria. As discussed in Section 2.1, such systems possess a continuum of equilibria

and hence semistability [46] is the relevant notion of stability. It is important to note that

semistability is not equivalent to set stability of the equilibrium set. Indeed, it is possible for

trajectories to approach the equilibrium set without any trajectory approaching any single

equilibrium [46].

Since communication links among multiagent systems are often unreliable due to mul-

tipath effects and exogenous disturbances, the information exchange topologies in network

systems are often dynamic. In particular, link failures or creations in network multiagent

systems result in switchings of the communication topology. This is the case, for example,

if information between agents is exchanged by means of line-of-sight sensors that experience

periodic communication dropouts due to agent motion. Variation in network topology intro-

duces system discontinuities, which in turn give rise to switched dynamical systems. In this

case, the vector field defining the dynamical system is a discontinuous function of the state

and/or time, and hence, system stability should involve analysis of semistability of switched

systems having a continuum of equilibria.

In this research [5, 6], we develop semistability and uniform semistability analysis re-

sults for switched linear and nonlinear systems. Since solutions to switched systems are a

function of both the system initial conditions and the admissible switching signals, unifor-

mity here refers to the convergence rate to a Lyapunov stable equilibrium as the switching

signal ranges over a given switching set. Our main results involve sufficient conditions for

semistability and uniform semistability using multiple Lyapunov functions and sufficient reg-

ularity assumptions on the class of switching signals considered. Specifically, using multiple

Lyapunov functions whose derivatives are negative semidefinite, semistability for switched

linear and nonlinear systems are established. If, in addition, the admissible switching signals

have infinitely many disjoint intervals of length bounded from below and above, uniform

semistability can be concluded.
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2.3. A New Neuroadaptive Control Architecture for Nonlinear

Uncertain Dynamical Systems: Beyond σ- and e-Modifications

Neural networks have been extensively used for adaptive system identification as well as

adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and

neuroadaptive control is to achieve system performance without excessive reliance on system

models. The fundamental difference between adaptive control and neuroadaptive control

can be traced back to the modeling and treatment of the system uncertainties as well as

the structure of the basis functions used in constructing the regressor vector. In particular,

adaptive control is based on constant, linearly parameterized system uncertainty models of a

known structure but unknown parameters. This uncertainty characterization allows for the

system nonlinearities to be parameterized by a finite linear combination of basis functions

within a class of function approximators such as rational functions, spline functions, radial

basis functions, sigmoidal functions, and wavelets. However, this linear parametrization with

a given basis function cannot, in general, exactly capture the system uncertainty.

To approximate a larger class of nonlinear system uncertainty, the uncertainty can be

expressed in terms of a neural network involving a parameterized nonlinearity. Hence, in

contrast to adaptive control, neuroadaptive control is based on the universal function approx-

imation property, wherein any continuous nonlinear system uncertainty can be approximated

arbitrarily closely on a compact set using a neural network with appropriate size, structure,

and weights, all of which are not necessarily known a priori. Hence, while neuroadaptive

control has advantages over standard adaptive control in the ability to capture a much larger

class of uncertainties, further complexities arise when the basis functions are not known. In

particular, the choice and the structure of the basis functions as well as the size of the neu-

ral network and the approximation error over a compact domain become important issues

to address in neuroadaptive control. This difference in the modeling and treatment of the

system uncertainties results in the ability of adaptive controllers to guarantee asymptotic

closed-loop system stability versus ultimate boundness as is the case with neuroadaptive

controllers.

To improve robustness and the speed of adaptation of adaptive and neuroadaptive con-

trollers several controller architectures have been proposed in the literature. These include

the σ- and e-modification architectures used to keep the system parameter estimates from

growing without bound in the face of system uncertainty. In this research [10,13,30], a new

neuroadaptive control architecture for nonlinear uncertain dynamical systems is developed.

Specifically, the proposed framework involves a new and novel controller architecture involv-

ing additional terms, or Q-modification terms, in the update laws that are constructed using

5



a moving time window of the integrated system uncertainty. The Q-modification terms can

be used to identify the ideal neural network system weights which can be used in the adaptive

law. In addition, these terms effectively suppress system uncertainty.

Even though the proposed approach is reminiscent to the composite adaptive control

framework, the Q-modification framework does not involve filtered versions of the control

input and system state in the update laws nor does it involve a least-squares exponential

forgetting factor. Rather, the update laws involve auxiliary terms predicated on an estimate

of the unknown neural network weights which in turn are characterized by an auxiliary

equation involving the integrated error dynamics over a moving time interval. Our results

address vector uncertainty structures with nonlinear parameterizations. In addition, state

and output feedback controllers are developed. Finally, to illustrate the efficacy of the

proposed approach we apply our results to a spacecraft model involving an unknown moment

of inertia matrix as well as a Boeing unmanned combat aerial vehicle model with an actuator

system failure and compare our results with standard neuroadaptive control methods.

2.4. Finite-Time Semistability, Filippov Systems, and Consensus

Protocols for Nonlinear Dynamical Networks with Switching

Topologies

Modern complex dynamical systems are highly interconnected and mutually interdepen-

dent, both physically and through a multitude of information and communication networks.

Distributed decision-making for coordination of networks of dynamic agents involving in-

formation flow can be naturally captured by graph-theoretic notions. These dynamical

network systems cover a very broad spectrum of applications including cooperative control

of unmanned air vehicles (UAV’s), autonomous underwater vehicles (AUV’s), distributed

sensor networks, air and ground transportation systems, swarms of air and space vehicle

formations, and congestion control in communication networks, to cite but a few examples.

Hence, it is not surprising that a considerable research effort has been devoted to control of

networks and control over networks in recent years.

Since communication links among multiagent systems are often unreliable due to mul-

tipath effects and exogenous disturbances, the information exchange topologies in network

systems are often dynamic. In particular, link failures or creations in network multiagent

systems result in switchings of the communication topology. This is the case, for example,

if information between agents is exchanged by means of line-of-sight sensors that experience

periodic communication dropouts due to agent motion. Variation in network topology is

introduced through control input discontinuities, which in turn give rise to discontinuous
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dynamical systems. In this case, the vector field defining the dynamical system is a discon-

tinuous function of the state, and hence, system stability can be analyzed using nonsmooth

Lyapunov theory involving concepts such as weak and strong stability notions, differential

inclusions, and generalized gradients of locally Lipschitz continuous functions and proximal

subdifferentials of lower semicontinuous functions.

In many applications involving multiagent systems, groups of agents are required to

agree on certain quantities of interest. In particular, it is important to develop information

consensus protocols for networks of dynamic agents wherein a unique feature of the closed-

loop dynamics under any control algorithm that achieves consensus is the existence of a

continuum of equilibria representing a state of equipartitioning or consensus. Under such

dynamics, the limiting consensus state achieved is not determined completely by the dy-

namics, but depends on the initial system state as well. Information consensus protocols are

key in addressing rendezvous problems, formation control, flocking, and attitude alignment

in multiagent systems. For such systems possessing a continuum of equilibria, semistability,

and not asymptotic stability, is the relevant notion of stability.

Semistability is the property whereby every trajectory that starts in a neighborhood of a

Lyapunov stable equilibrium converges to a (possibly different) Lyapunov stable equilibrium.

From a practical viewpoint, it is not sufficient to only guarantee that a network converges to

a state of consensus since steady state convergence is not sufficient to guarantee that small

perturbations from the limiting state will lead to only small transient excursions from a

state of consensus. It is also necessary to guarantee that the equilibrium states representing

consensus are Lyapunov stable, and consequently, semistable. It is important to note that

semistability is not merely equivalent to asymptotic stability of the set of equilibria, and

hence, is a more natural stability notion than considering stability of the consensus subspace.

To address agreement problems in switching networks with state-dependent topologies,

in this research [9, 12] we extend the theory of semistability to discontinuous time-invariant

dynamical systems [9]. In particular, we develop sufficient conditions to guarantee weak

and strong invariance of Fillipov solutions. Moreover, we present Lyapunov-based tests for

strong and weak semistability for autonomous differential inclusions. In addition, we develop

sufficient conditions for finite-time semistability of autonomous discontinuous dynamical

systems [12]. Achieving agreement in finite time allows the dynamical network to use exact

information in addressing other system tasks. Furthermore, using our consensus algorithms

we develop a coordination framework for multivehicle rendezvous.
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2.5. Dissipativity Theory for Discontinuous Dynamical Systems:

Basic Input, State, and Output Properties, and Finite-Time

Stability of Feedback Interconnections

In control engineering, dissipativity theory provides a fundamental framework for the

analysis and control design of dynamical systems using an input, state, and output system

description based on system-energy-related considerations. The notion of energy here refers

to abstract energy notions for which a physical system energy interpretation is not necessary.

The dissipation hypothesis on dynamical systems results in a fundamental constraint on their

dynamic behavior, wherein a dissipative dynamical system can deliver only a fraction of its

energy to its surroundings and can store only a fraction of the work done to it.

Dissipativity theory along with Lyapunov stability theory for feedback interconnections

of dissipative systems has been extensively developed for dynamical systems possessing con-

tinuous flows [46]. However, numerous engineering applications give rise to discontinuous

dynamical systems. Specifically, in impact mechanics the motion of a dynamical system

is subject to velocity jumps and force discontinuities leading to nonsmooth dynamical sys-

tems [9]. In mechanical systems subject to unilateral constraints on system positions, discon-

tinuities occur naturally through system-environment interaction. Alternatively, open-loop

and feedback controllers also give rise to discontinuous dynamical systems. In particular,

bang-bang controllers discontinuously switch between maximum and minimum control input

values to generate minimum-time system trajectories, whereas sliding mode controllers use

discontinuous feedback control for system stabilization. In switched systems [5, 6] switch-

ing algorithms are used to select an appropriate plant (or controller) from a given finite

parameterized family of plants (or controllers) giving rise to discontinuous systems. As for

dynamical systems with continuous flows [46], dissipativity theory can play a fundamental

role in addressing robustness, disturbance rejection, stability of feedback interconnections,

and optimality for discontinuous dynamical systems.

In light of the fact that energy notions involving conservation, dissipation, and transport

also arise naturally for discontinuous systems, it seems natural that dissipativity theory can

play a key role in the analysis and control design of discontinuous dynamical systems. Specif-

ically, as in the analysis of dynamical systems with continuous flows, dissipativity theory for

discontinuous dynamical systems can involve conditions on system parameters that render

an input, state, and output system dissipative. In addition, robust stability for discontin-

uous dynamical systems can be analyzed by viewing a discontinuous dynamical system as

an interconnection of discontinuous dissipative dynamical subsystems. Alternatively, discon-

tinuous dissipativity theory can be used to design discontinuous feedback controllers that
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add dissipation and guarantee stability robustness allowing discontinuous stabilization to be

understood in physical terms.

In this research [8], we develop dissipativity notions for discontinuous dynamical systems.

In particular, we introduce a generalized definition of dissipativity for discontinuous dynam-

ical systems in terms of set-valued supply rate maps and set-valued storage maps consisting

of locally Lebesgue integrable supply rates and piecewise continuous storage functions, re-

spectively. The collection of storage functions and supply rates satisfy a set of dissipation

inequalities reflecting the fact that the dissipated generalized energies of a discontinuous

dissipative system is nonnegative and is given by the difference of what is supplied and what

is stored. Our dissipativity definition includes set-valued connective supply maps consisting

of locally Lebesgue integrable connective supply rates to reflect the fact that an inactive

storage function, corresponding to a Filippov set-valued map, can still change since multiple

storage functions within a set-valued storage map have common state variables.

Next, we develop extended Kalman-Yakubovich-Popov set-valued conditions in terms of

the discontinuous system dynamics for characterizing passivity and nonexpansivity via gen-

eralized Clarke gradients of locally Lipschitz continuous storage functions for discontinuous

systems. In addition, using the concepts of dissipativity for discontinuous dynamical systems

with appropriate set-valued storage maps and set-valued supply rate maps, we construct set-

valued Lyapunov functions for discontinuous feedback systems by appropriately combining

the set-valued storage maps for the forward and feedback subsystems. General stability

criteria are given for Lyapunov, asymptotic, and finite-time stability for feedback intercon-

nections of discontinuous dynamical systems. In the case where the set-valued supply rate

map consists of supply rates involving net system power or weighted input-output energy,

these results provide extensions of the positivity and small gain theorems to discontinuous

dynamical systems.

2.6. Output Feedback Adaptive Command Following for Nonmin-

imum Phase Uncertain Dynamical Systems

Mathematical models are critical in capturing and studying physical phenomena that

undergo spatial and temporal evolution arising in most applications of science and engi-

neering. These models are often based on first-principles of physics and are derived using

fundamental physical laws. However, due to system complexity, nonlinearities, uncertainty,

and disturbances, first-principle models are often based on simplifying approximations re-

sulting in system modeling errors. For systems where the system model does not adequately

capture the physical system due to idealized assumptions, model simplification, and model
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parameter uncertainty, adaptive control methods can be used to achieve system performance

without excessive reliance on system models.

Direct adaptive controllers require less system modeling information than robust con-

trollers and can address system uncertainties and system failures. These controllers adapt

feedback gains in response to system variations without requiring a parameter estimation al-

gorithm. This property distinguishes them from indirect adaptive controllers that employ an

estimation algorithm to estimate the unknown system parameters and adapt the controller

gains. Direct adaptive controllers can be classified as either full state feedback or output

feedback designs.

Full state feedback designs assume knowledge of the state variables, and this assumption

leads to computationally simpler adaptive controller algorithms as compared to output feed-

back algorithms. Output feedback direct adaptive controllers, however, are required for most

applications that involve high-dimensional models such as active noise suppression, active

control of flexible structures, fluid flow control systems, and combustion control processes.

Models for these applications vary from (reasonably) accurate low frequency models in the

case of structural control problems, to less accurate low-order models in the case of active

control of noise, vibrations, flows, and combustion processes.

There has been a number of results in recent decades focused on output feedback di-

rect adaptive controllers. These results require an observer for unknown state variables, an

observer for output tracking errors, an output predictor, and/or estimation of Markov pa-

rameters that lead to adaptive control algorithms with varying sets of assumptions. These

assumptions include knowledge of the relative degree of the regulated system output and the

dimension of the system, as well as the requirement that the system be minimum phase or

passive.

Virtually all output feedback adaptive controllers are developed under a minimum-phase

assumption. In this research [32], we develop an output feedback adaptive control framework

for nonminimum phase multivariable systems for output stabilization, command following,

and disturbance rejection. The approach is based on a nonminimal state space realization

that generates an expanded set of states using the filtered inputs and filtered outputs of

the original system. Specifically, a direct adaptive controller for the nonminimal state space

model is constructed using the expanded states of the nonminimal realization and is shown to

be effective for multi-input, multi-output nonminimum phase systems with unstable dynam-

ics. The adaptive controller does not require any model information except for an expanded

compatibility condition involving the nonminimal model, which is far less restrictive than

standard matching conditions for model reference output feedback adaptive control involving
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the actual system dynamics. In addition, the proposed adaptive controller does not require

knowledge of the nonminimum phase system zeros.

2.7. A Neuroadaptive Control Architecture for Nonlinear Uncer-

tain Dynamical Systems with Amplitude, Rate, and Time-

Delay Constraints

Any electromechanical control actuation device is subject to amplitude and/or rate con-

straints leading to saturation nonlinearities enforcing limitations on control amplitudes and

control rates. Actuator nonlinearities can severely degrade closed-loop system performance,

and in some cases drive the system to instability, if not accounted for in the control design

process. These effects are even more pronounced for adaptive controllers which continue to

adapt when the feedback loop has been severed due to the presence of actuator saturation

causing unstable controller modes to drift, which in turn leads to severe windup effects and

unacceptable transients after saturation.

Many practical applications involve nonlinear dynamical systems with simultaneous con-

trol amplitude and rate saturation. The presence of control rate saturation may further

exacerbate the problem of control amplitude saturation. For example, in advanced tacti-

cal fighter aircraft with high maneuverability requirements, pilot-induced oscillations can

cause actuator amplitude and rate saturation in the control surfaces, leading to catastrophic

failures.

In addition to actuator amplitude and rate saturation, actuator time-delay constraints as

well as actuator dynamics need to be accounted for in the control design process. Accounting

for input time delays is critical in adaptive control design since they can quantify time

delay margin which can translate in increasing system gain margins. Finally, accounting for

actuator dynamics can capture the effects of slow actuator effects which can degrade system

performance, and potentially lead to instability.

In this research [36], we develop a new model reference adaptive control architecture for

nonlinear uncertain dynamical systems with input actuator and time delay constraints. In

particular, we consider both linear and nonlinear in the parameters neural network approx-

imations to design neuroadaptive controllers for stabilization and command following in the

presence of actuator dynamics that can effectively account for actuator amplitude and rate

saturation constraints. In addition, we extend our framework to additionally account for

actuator time-delay constraints.
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2.8. Stability and Control of Large-Scale Dynamical Systems

Modern complex large-scale dynamical systems arise in virtually every aspect of sci-

ence and engineering, and are associated with a wide variety of physical, technological,

environmental, and social phenomena. Such systems include large-scale aerospace systems,

power systems, communications systems, network systems, transportation systems, large-

scale manufacturing systems, integrative biological systems, economic systems, ecological

systems, and process control systems. These systems are strongly interconnected and consist

of interacting subsystems exchanging matter, energy, or information with the environment.

In addition, the subsystem interactions often exhibit remarkably complex system behav-

iors. Complexity here refers to the quality of a system wherein interacting subsystems form

multiechelon hierarchical evolving structures exhibiting emergent system properties.

The sheer size, or dimensionality, of large-scale dynamical systems necessitates decen-

tralized analysis and control system synthesis methods for their analysis and control design.

Specifically, in analyzing complex large-scale interconnected dynamical systems it is often

desirable to treat the overall system as a collection of interacting subsystems. The behavior

and properties of the aggregate large-scale system can then be deduced from the behaviors

of the individual subsystems and their interconnections. Often the need for such an analysis

framework arises from computational complexity and computer throughput constraints. In

addition, for controller design the physical size and complexity of large-scale systems im-

poses severe constraints on the communication links between system sensors, processors,

and actuators, which can render centralized control architectures impractical. This leads to

consideration of decentralized controller architectures involving multiple sensor-processor-

actuator subcontrollers without real-time intercommunication. The design and implemen-

tation of decentralized controllers is a nontrivial task involving control-system architecture

determination and actuator-sensor assignments for a particular subsystem, as well as pro-

cessor software design for each subcontroller of a given architecture.

In this research [2], we develop a unified stability analysis and control design framework

for nonlinear large-scale interconnected dynamical systems based on vector Lyapunov func-

tion methods, vector dissipativity theory, and decentralized control architectures. The use

of vector Lyapunov functions in dynamical system theory offers a very flexible framework

for stability analysis since each component of the vector Lyapunov function can satisfy less

rigid requirements as compared to a single scalar Lyapunov function. Moreover, in the anal-

ysis of large-scale interconnected nonlinear dynamical systems, several Lyapunov functions

arise naturally from the stability properties of each individual subsystem. In addition, since

large-scale dynamical systems have numerous input, state, and output properties related to
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conservation, dissipation, and transport of energy, matter, or information, extending classical

dissipativity theory to capture conservation and dissipation notions on the subsystem level

provides a natural energy flow model for large-scale dynamical systems. Aggregating the

dissipativity properties of each of the subsystems by appropriate storage functions and sup-

ply rates, allows us to study the dissipativity properties of the composite large-scale system

using the newly developed notions of vector storage functions and vector supply rates.

Finally, a novel class of fixed-order, energy-based hybrid decentralized controllers is pro-

posed as a means for achieving enhanced energy dissipation in large-scale vector lossless

and vector dissipative dynamical systems. These dynamic decentralized controllers com-

bine a logical switching architecture with continuous dynamics to guarantee that the system

plant energy is strictly decreasing across switchings. The general framework leads to hybrid

closed-loop systems described by impulsive differential equations [2]. In addition, we con-

struct hybrid dynamic controllers that guarantee that each subsystem-subcontroller pair of

the hybrid closed-loop system is consistent with basic thermodynamic principles. Special

cases of energy-based hybrid controllers involving state-dependent switching are described,

and several illustrative examples as well as an experimental testbed is designed to demon-

strate the efficacy of the proposed approach.

2.9. Coordination Control for Multiagent Interconnected Systems

Modern complex multiagent dynamical systems are highly interconnected and mutually

interdependent, both physically and through a multitude of information and communica-

tion networks. Distributed decision-making for coordination of networks of dynamic agents

involving information flow can be naturally captured by graph-theoretic notions. These dy-

namical network systems cover a very broad spectrum of applications including cooperative

control of unmanned air vehicles (UAV’s), autonomous underwater vehicles (AUV’s), dis-

tributed sensor networks, air and ground transportation systems, swarms of air and space

vehicle formations, and congestion control in communication networks, to cite but a few

examples. Hence, it is not surprising that a considerable research effort has been devoted to

control of networks and control over networks in recent years.

A key application area of multiagent network coordination within aerospace systems

is cooperative control of vehicle formations using distributed and decentralized controller

architectures. Distributed control refers to a control architecture wherein the control is

distributed via multiple computational units that are interconnected through information

and communication networks, whereas decentralized control refers to a control architecture

wherein local decisions are based only on local information. Vehicle formations are typically
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dynamically decoupled, that is, the motion of a given agent or vehicle does not directly affect

the motion of the other agents or vehicles. The multiagent system is coupled via the task

which the agents or vehicles are required to perform.

The complexity of cooperative manoeuvres that multiagent systems need to perform as

well as environmental constraints often necessitate the design of control algorithms that use

information on current position and velocity of each vehicle to steer them while maintaining

a specified formation. In particular, for mobile agents operating in a foggy environment

or located far from each other, open-loop visual control for coordinated motion becomes

impractical. In this case, feedback control algorithms are required for individual vehicle

steering which determine how a given vehicle maneuvers based on positions and velocities

of nearby vehicles and/or on those of a formation leader. The leader could be real, that is,

one of the vehicles in a formation leads the others, or the leader could be virtual, that is,

vehicles synthesize a leader and the motions of the vehicles in a formation are defined with

respect to a virtual agent whose positions and velocities are known at each instant of time.

Analysis and control design for networks of mobile agents has received considerable at-

tention in the literature. Common formations of multiagent systems include flocking, cyclic

pursuit, (virtual) leader following, and rendezvous. Graph-theoretic notions are essential in

the analysis and control design for a system of mobile agents performing a common task.

Several researchers have proposed different techniques for analyzing network systems. Specif-

ically, graph theory has been used to model interconnected systems and analyze the stability

of formations of large number of agents. In addition, potential functions have been used to

analyze flocking.

In this research [2], we develop a stability analysis and control design framework for multi-

agent coordination predicated on vector Lyapunov functions. In multiagent systems, several

Lyapunov functions arise naturally where each agent can be associated with a generalized

energy function corresponding to a component of a vector Lyapunov function. Furthermore,

since a specified formation of multiple vehicles can be characterized by a time-varying set in

the state space, the problem of control design for multiagent coordinated motion is equiva-

lent to design of stabilizing controllers for time-varying sets of nonlinear dynamical systems.

Thus, using a stability and control design framework for time-varying sets, we design dis-

tributed control algorithms for stabilization of multi-vehicle formations. These distributed

control algorithms use only local information of the individual vehicle relative position and

velocity with respect to the leader in order to maintain a specified formation for a system

of multiple vehicles. Finally, we specialize the results obtained for time-varying sets to ad-

dress stabilization of time-invariant sets and develop stabilizing control algorithms for static
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formations (rendezvous) of multiple vehicles. The developed cooperative control algorithms

are shown to globally exponentially stabilize both moving and static formations.

2.10. Dissipative Differential Inclusions, Set-Valued Energy Stor-

age and Supply Rate Maps, and Discontinuous Dynamical

Systems

The key foundation in developing dissipativity theory for nonlinear dynamical systems

with continuous flows was presented by Willems in his seminal two-part paper on dissipative

dynamical systems. In particular, Willems introduced the definition of dissipativity for gen-

eral nonlinear dynamical systems in terms of a dissipation inequality involving a generalized

system power input, or supply rate, and a generalized energy function, or storage function.

The dissipation inequality implies that the increase in generalized system energy over a given

time interval cannot exceed the generalized energy supply delivered to the system during this

time interval. The set of all possible system storage functions is convex and every system

storage function is bounded from below by the available system storage and bounded from

above by the required energy supply.

In this research [23], we develop dissipativity notions for dynamical systems with discon-

tinuous vector fields. Specifically, we consider dynamical systems with Lebesgue measurable

and locally essentially bounded vector fields characterized by differential inclusions involving

Filippov set-valued maps specifying a set of directions for the system velocity and admitting

Filippov solutions with absolutely continuous curves. In particular, we introduce a gener-

alized definition of dissipativity for discontinuous dynamical systems in terms of set-valued

supply rate maps and set-valued storage maps consisting of locally Lebesgue integrable sup-

ply rates and piecewise continuous storage functions, respectively. The collection of storage

functions and supply rates satisfy a set of dissipation inequalities reflecting the fact that the

dissipated generalized energies of a discontinuous dissipative system is nonnegative and is

given by the difference of what is supplied and what is stored.

In addition, we introduce the notion of a set-valued available storage map and a set-valued

required supply map, and show that if these maps have closed convex images they involve

single-valued maps corresponding to the smallest available storage and the largest required

supply of the differential inclusion, respectively. Furthermore, we show that all system stor-

age functions are bounded from above by the largest required supply and bounded from below

by the smallest available storage, and hence, a dissipative differential inclusion can deliver to

its surroundings only a fraction of its generalized stored energy and can store only a fraction

of the generalized work done to it. Finally, we develop analogous results for lossless differen-
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tial inclusions as well as specialize our results to switched differential inclusions to address

the notion of dissipativity for switched dynamical systems. Future extensions will focus on

using discontinuous dissipativity theory as a design tool for developing group coordination

algorithms for multiagent systems possessing a dynamic (i.e., switching) topology.

2.11. Heat Flow, Work Energy, Chemical Reactions, and Ther-

modynamics: A Dynamical Systems Perspective

There is no doubt that thermodynamics is a theory of universal proportions whose laws

reign supreme among the laws of nature and are capable of addressing some of science’s most

intriguing questions about the origins and fabric of our universe. The laws of thermodynamics

are among the most firmly established laws of nature and play a critical role in the under-

standing of our expanding universe. In addition, thermodynamics forms the underpinning

of several fundamental life science and engineering disciplines, including biological systems,

physiological systems, chemical reaction systems, ecological systems, information systems,

and network systems, to cite but a few examples. While from its inception its speculations

about the universe have been grandiose, its mathematical foundation has been amazingly

obscure and imprecise [47]. This is largely due to the fact that classical thermodynamics is

a physical theory concerned mainly with equilibrium states and does not possess equations

of motion. The absence of a state space formalism in classical thermodynamics, and physics

in general, is quite disturbing and in our view largely responsible for the monomeric state of

classical thermodynamics.

In recent research [47], we combined the two universalisms of thermodynamics and dy-

namical systems theory under a single umbrella to develop a dynamical system formalism

for classical thermodynamics so as to harmonize it with classical mechanics. While it seems

impossible to reduce thermodynamics to a mechanistic world picture due to microscopic re-

versibility and Poincaré recurrence, the system thermodynamic formulation of [47] provides

a harmonization of classical thermodynamics with classical mechanics. In particular, our dy-

namical system formalism captures all of the key aspects of thermodynamics, including its

fundamental laws, while providing a mathematically rigorous formulation for thermodynam-

ical systems out of equilibrium by unifying the theory of heat transfer with that of classical

thermodynamics. In addition, the concept of entropy for a nonequilibrium state of a dy-

namical process is defined, and its global existence and uniqueness is established. This state

space formalism of thermodynamics shows that the behavior of heat, as described by the

conservation equations of thermal transport and as described by classical thermodynamics,

can be derived from the same basic principles and is part of the same scientific discipline.
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Connections between irreversibility, the second law of thermodynamics, and the entropic

arrow of time are also established in [47]. Specifically, we show a state irrecoverability and,

hence, a state irreversibility nature of thermodynamics. State irreversibility reflects time-

reversal non-invariance, wherein time-reversal is not meant literally; that is, we consider

dynamical systems whose trajectory reversal is or is not allowed and not a reversal of time

itself. In addition, we show that for every nonequilibrium system state and corresponding

system trajectory of our thermodynamically consistent dynamical system, there does not

exist a state such that the corresponding system trajectory completely recovers the initial

system state of the dynamical system and at the same time restores the energy supplied by

the environment back to its original condition. This, along with the existence of a global

strictly increasing entropy function on every nontrivial system trajectory, establishes the

existence of a completely ordered time set having a topological structure involving a closed

set homeomorphic to the real line giving a clear time-reversal asymmetry characterization

of thermodynamics and establishing an emergence of the direction of time flow.

In this research [14], we reformulate and extend some of the results of [47]. In par-

ticular, unlike the framework in [47] wherein we establish the existence and uniqueness of

a global entropy function of a specific form for our thermodynamically consistent system

model, in this research we assume the existence of a continuously differentiable, strictly con-

cave function that leads to an entropy inequality that can be identified with the second law

of thermodynamics as a statement about entropy increase. We then turn our attention to

stability and convergence. Specifically, using Lyapunov stability theory and the Krasovskii-

LaSalle invariance principle, we show that for an adiabatically isolated system the proposed

interconnected dynamical system model is Lyapunov stable with convergent trajectories to

equilibrium states where the temperatures of all subsystems are equal. Finally, we present

a state-space dynamical system model for chemical thermodynamics. In particular, we use

the law of mass-action to obtain the dynamics of chemical reaction networks. Furthermore,

using the notion of the chemical potential [14], we unify our state space mass-action kinetics

model developed in [1, 7] with our thermodynamic dynamical system model involving en-

ergy exchange. In addition, we show that entropy production during chemical reactions is

nonnegative and the dynamical system states of our chemical thermodynamic state space

model converge to a state of temperature equipartition and zero affinity (i.e., the difference

between the chemical potential of the reactants and the chemical potential of the products

in a chemical reaction).
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2.12. A Variational Approach to the Fuel Optimal Control Prob-

lem for UAV Formations

The pivotal role of unmanned aerial vehicles (UAVs) in modern aircraft technology is

evidenced by the large number of civil and military applications they are employed in. For

example, UAVs successfully serve as platforms carrying payloads aimed at land monitoring,

wildfire detection and management, law enforcement, pollution monitoring, and communi-

cation broadcast relay, to name just a few.

A formation of UAVs, defined by a set of vehicles whose states are coupled through a

common control law, is often more valuable than a single aircraft because it can accomplish

several tasks concurrently. In particular, UAV formations can guarantee higher flexibility and

redundancy, as well as increased capability of distributed payloads. For example, an aircraft

formation can successfully intercept a vehicle which is faster than its chasers. Alternatively, a

UAV formation equipped with interferometic synthetic aperture radar (In-SAR) antennas can

pursue both along-track and cross-track interferometry, which allow harvesting information

that a single radar cannot detect otherwise.

Path planning is one of the main problems when designing missions involving multiple

vehicles; a UAV formation typically needs to accomplish diverse tasks while meeting some

assigned constraints. For example, a UAV formation may need to intercept given targets

while its members maintain an assigned relative attitude. Trajectories should also be op-

timized with respect to some performance measure capturing minimum time or minimum

fuel expenditure. In particular, trajectory optimization is critical for mini and micro UAVs

(µUAVs) because they often operate independently from remote human controllers for ex-

tended periods of time and also because of limited amount of available energy sources.

In this research [18], we provide a rigorous and sufficiently broad formulation of the

optimal path planning problem for UAV formations, modeled as a system of n 6-degrees of

freedom (DoF) rigid bodies subject to a constant gravitational acceleration and aerodynamic

forces and moments. Specifically, system trajectories are optimized in terms of control effort,

that is, we design a control law that minimizes the forces and moments needed to operate

a UAV formation, while meeting all the mission objectives. Minimizing the control effort is

equivalent to minimizing the formation’s fuel consumption in the case of vehicles equipped

with conventional fuel-based propulsion systems and is a suitable indicator of the energy

consumption for vehicles powered by batteries or other power sources.

In this research [18], we also derive an optimal control law which is independent of the

size of the formation, the system constraints, and the environmental model adopted, and

hence, our framework applies to aircraft, spacecraft, autonomous marine vehicles, and robot
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formations. The direction and magnitude of the optimal control forces and moments is a

function of the dynamics of two vectors, namely the translational and rotational primer

vectors. In general, finding the dynamics of these two vectors over a given time interval is

a demanding task that does not allow for an analytical closed-form solution, and hence, a

numerical approach is required. Our main result involves necessary conditions for optimality

of the formations’ trajectories.

2.13. Output Feedback Adaptive Stabilization and Command Fol-

lowing for Minimum Phase Uncertain Dynamical Systems

As discussed in Section 2.6, there has been a number of results in recent decades focused

on output feedback direct adaptive controllers. These results require an observer for un-

known state variables, an observer for output tracking errors, an output predictor, and/or

estimation of Markov parameters that lead to adaptive control algorithms with varying sets

of assumptions. These assumptions include knowledge of the relative degree of the regulated

system output and the dimension of the system, as well as the requirement that the sys-

tem be minimum phase or passive. The main reason for the minimum phase assumption is

because direct adaptive controllers employ high gain feedback that can drive nonminimum

phase systems to instability.

In this research [22], we extend the disturbance free adaptive control framework pre-

sented in [37] to develop an output feedback adaptive control framework for continuous-time

minimum phase multivariable uncertain dynamical systems with exogenous disturbances for

output stabilization and command following. The approach is based on a nonminimal state

space realization that generates an expanded set of states using the filtered inputs and fil-

tered outputs and their derivatives of the original system. Specifically, a direct adaptive

controller for the nonminimal state space model is constructed using the expanded states of

the nonminimal realization and is shown to be effective for multi-input, multi-output linear

dynamical systems with unmatched disturbances, unmatched uncertainties, and unstable

dynamics. The proposed adaptive control architecture requires knowledge of the open-loop

system’s relative degree as well as a bound on the system’s order. Several illustrative nu-

merical examples are provided to demonstrate the efficacy of the proposed approach.
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2.14. Robust Adaptive Control Architecture for Disturbance Re-

jection and Uncertainty Suppression with L∞ Transient and

Steady-State Performance Guarantees

One of the fundamental problems in feedback control design is the ability of the control

system to guarantee robust stability and robust performance with respect to system uncer-

tainties in the design model. To this end, adaptive control along with robust control theory

have been developed to address the problem of system uncertainty in control-system design.

The fundamental differences between adaptive control design and robust control design can

be traced to the modeling and treatment of system uncertainties as well as the controller

architecture structures.

In particular, adaptive control is based on constant linearly parameterized system un-

certainty models of a known structure but unknown variation, whereas robust control is

predicated on structured and/or unstructured linear or nonlinear (possibly time-varying)

operator uncertainty models consisting of bounded variation. Hence, for systems with con-

stant real parametric uncertainties with large unknown variations, adaptive control is clearly

appropriate, whereas for systems with time-varying parametric uncertainties and nonpara-

metric uncertainties with norm bounded variations, robust control may be more suitable.

In contrast to fixed-gain robust controllers, which are predicated on a mathematical model

of the system uncertainty and which maintain specified constants within the feedback control

law to sustain robust stability and performance over the range of system uncertainty, adap-

tive controllers directly or indirectly adjust feedback gains to maintain closed-loop stability

and improve performance in the face of system uncertainties. Specifically, indirect adaptive

controllers utilize parameter update laws to identify unknown system parameters and adjust

feedback gains to account for system variation, whereas direct adaptive controllers directly

adjust the controller gains in response to plant variation. In either case, the overall process

of parameter identification and controller adjustment constitutes a nonlinear control law ar-

chitecture, which makes validation and verification of guaranteed transient and steady-state

performance, as well as robustness margins of adaptive controllers extremely challenging.

While adaptive control has been used in numerous applications to achieve system per-

formance without excessive reliance on system models, the necessity of high-gain feedback

for achieving fast adaptation can be a serious limitation of adaptive controllers. Specifically,

in certain applications fast adaptation is required to achieve stringent tracking performance

specifications in the face of large system uncertainties and abrupt changes in system dy-

namics. This, for example, is the case for high performance aircraft systems that can be

subjected to system faults or structural damage which can result in major changes in aero-
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dynamic system parameters. In such situations, high-gain adaptive control is necessary in

order to rapidly reduce and maintain system tracking errors. However, fast adaptation using

high-gain feedback can result in high-frequency oscillations which can excite unmodeled sys-

tem dynamics resulting in system instability. Hence, there exists a critical trade-off between

system stability and control adaptation rate.

Virtually all adaptive control methods developed in the literature have averted the prob-

lem of high-gain control. Notable exceptions include the use of a low-pass filter that effec-

tively subverts high frequency oscillations that can occur due to fast adaptation while using

a predictor model to reconstruct the reference system model. In particular, this method in-

volves a robust adaptive control architecture that provides sufficient conditions for stability

and performance in terms of L1-norms of the underlying system transfer functions despite

fast adaptation, leading to uniform bounds on the L
∞
-norms of the system input-output

signals.

In this research [19], a new adaptive control architecture for linear and nonlinear uncer-

tain dynamical systems is developed to address the problem of high-gain adaptive control.

Specifically, the proposed framework involves a new and novel controller architecture involv-

ing a modification term in the update law that minimizes an error criterion involving the

distance between the weighted regressor vector and the weighted system error states. This

modification term allows for fast adaptation without hindering system robustness. In par-

ticular, we show that the governing tracking closed-loop system error equation approximates

a Hurwitz linear time-invariant dynamical system with L
∞

input-output signals. This key

feature of our framework allows for robust stability analysis of the proposed adaptive control

law using L1 system theory. Specifically, in the face of fast adaptation, uniform transient and

steady-state system performance bounds are derived in terms of L1-norms of the closed-loop

system error dynamics. We further show that by properly choosing the design parameters in

the modification term we can adjust the bandwidth of the adaptive controller, the transient

and steady-state closed-loop performance, and the size of the ultimate bound of the closed-

loop system trajectories independently of the system adaptation rate. Several illustrative

numerical examples are provided to demonstrate the efficacy of the proposed approach.

2.15. Multistability, Bifurcations, and Biological Neural Networks:

A Synaptic Drive Firing Model for Cerebral Cortex Transi-

tion in the Induction of General Anesthesia

Advances in neuroscience have been closely linked to mathematical modeling beginning

with the integrate-and-fire model of Lapicque and proceeding through the modeling of the
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action potential by Hodgkin and Huxley to the current era of mathematical neuroscience.

Neuroscience has always had models to interpret experimental results from a high-level com-

plex systems perspective; however, expressing these models with dynamic equations rather

than words fosters precision, completeness, and self-consistency. Nonlinear dynamical sys-

tem theory, in particular, can provide a framework for a rigorous description of the behavior

of large-scale networks of neurons. A particularly interesting application of nonlinear dy-

namical systems theory to the neurosciences is to study phenomena of the central nervous

system that exhibit nearly discontinuous transitions between macroscopic states. One such

example exhibiting this phenomenon is the induction of general anesthesia.

The rational, safe, and effective utilization of any drug in the practice of medicine is

grounded in an understanding of the pharmacodynamics of the drug, loosely defined as what

the drug does to the body. A very important measure of the pharmacodynamics of any

drug is the drug concentration parameter EC50, which reflects the drug dose at which the

therapeutic effect is achieved in 50% of the cases. This concept is certainly applicable for the

administration of general inhalational anesthetics, where the potency of the drug is defined

by the minimum alveolar concentration (MAC) of the drug needed to prevent a response to

noxious stimuli in 50% of administrations.

The MAC concept is intrinsically embedded in a probabilistic framework. It is the con-

centration at which the probability of a response to a noxious stimulus is 0.5. Typically the

MAC of a particular anesthetic is determined by administering various doses of the agent

to a population of patients and determining the dose at which there is a 0.5 chance of re-

sponding to a noxious stimulus. (Technically, we identify the concentration in the alveoli,

the fundamental functional gas exchange units of the lung, at which the chance of response

is 0.5.) It has been possible, however, to conduct studies of single subjects, varying the

anesthetic concentration and determining responsiveness. When this has been done, it has

been noted that the transition from responsiveness to non-responsiveness in the individual

patient is very sharp, almost an all-or-none transition. This simply confirms the observa-

tions of generations of clinicians. And this raises the question of how to account for such a

transition in terms of the known molecular properties of the anesthetic agent.

Although general anesthesia has been used in the clinical practice of medicine for over

150 years, the mechanism of action is still not fully understood and is still under considerable

investigation. Theories range from a nonspecific perturbation of the lipid bilayer membrane

of neurons, the cells responsible for the “information” function of the central nervous system,

to the interaction of the anesthetic agent with specific protein receptors. Early theories

postulated that anesthesia is produced by disturbance of the physical properties of cell
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membranes. The work of Meyer and Overton demonstrated that for some anesthetics there

was a correlation between anesthetic potency and solubility in fat-like solvents. This led

to a theory that anesthesia resulted from a nonspecific perturbation of the lipid bilayer

membrane of neurons. Subsequent research then found that membrane proteins performed

functions of excitability and this led to a focus on anesthetic binding and perturbation

of hydrophobic regions of membrane proteins. Further research also revealed that some

anesthetic gases follow the Meyer-Overton correlation but do not produce anesthesia and

some Meyer-Overton gases are excitatory and can cause seizures. These results led to the

more common modern focus on the interaction of the anesthetic agent with specific protein

receptors.

In particular, there has been extensive investigation of the influence of anesthetic agents

on the binding of neurotransmitters to their postsynaptic receptors. A plethora of recep-

tors have been investigated, including receptors for glycine, serotonin type 2 and 3, N-

methyl-d-aspartate (NMDA), α-2 adrenoreceptors, α-amino-3-hydroxy-5-methyl-4- isoxazo-

lepropionic acid (AMPA), histamine, acetycholine, and γ-aminobutyric acid (GABA). One

attractive aspect of this focus on postsynaptic receptors is it facilitates mathematical anal-

ysis on the basis of the effect of receptor binding on the postsynaptic potential. This is in

marked contrast to the Meyer-Overton hypothesis, which failed to explicitly detail how a

nonspecific perturbation of the lipid membrane would result in the anesthetic state.

In parallel with the investigation of the molecular interactions of general anesthetic

agents, there has also been active investigation of the anatomic pathways involved in the

transition from consciousness to anesthesia. There is compelling evidence that the immo-

bility created by some anesthetics is mediated at the level of the spinal cord. In contrast,

functional imaging and electroencephalograph analysis has suggested that the site of sup-

pression of consciousness is the thalamus, and thalamocortical tracts may play a critical role

in the suppression of consciousness.

Despite these advances in our understanding of the molecular interactions of anesthetic

agents and of specific anatomic loci for the action of anesthetic agents, there has been

less development of a mathematical framework to understand this fascinating and clinically

important phenomenon. It is certainly possible that if the mechanism of general anesthesia

is the binding of the anesthetic agent to a specific receptor protein, then the nearly all-

or-none transition from the awake state to the anesthetized state could be explained by a

highly cooperative binding of the anesthetic to the receptor. In fact, it has been common

to mathematically model the probability of responsiveness to drug concentration using the

Hill equation, a simplified equation originally derived in 1909 to describe the cooperative
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binding of oxygen to the hemoglobin molecule. However, to date, no single unifying receptor

mediating general anesthesia has been identified.

Rather, the most likely explanation for the mechanisms of action of anesthetics lies in

the network properties of the brain. It is well established that there are two general types

of neurons in the central nervous system—excitatory and inhibitory—interconnected in a

complex network. The action potential of a spiking neuron is propagated along the axon

to synapses where chemical neurotransmitters are released that generate a postsynaptic

potential on the dendrites of connected neurons. Excitatory neurons generate a depolarizing

postsynaptic potential on the dendrite of the connected neuron and if the depolarization is

of sufficient magnitude, then a spike will be induced in the connected neuron. In contrast,

inhibitory neurons generate a hyperpolarizing postsynaptic potential; an effect that acts to

maintain a quiescent state.

The human central nervous system involves a complex large-scale interconnected neural

network involving feedforward and feedback (or recurrent) networks, with the brain serving

as the central element of this network system. The brain is interconnected to receptors that

transmit sensory information to the brain, and in turn the brain delivers action commands

to effectors. The neural network of the brain consists of approximately 1011 neurons (nerve

cells) with each having 104 to 105 connections interconnected through subnetworks or nuclei.

The nuclei in turn consist of clusters of neurons each of which performs a specific and defined

function.

The most basic characteristic of the neurons that comprise the central nervous system is

the electrochemical potential gradient across the cell membrane. All cells of the human body

maintain an electrochemical potential gradient between the inside of the cell and the sur-

rounding milieu. Neurons have the capacity of excitability. If stimulated beyond a threshold

the neuron will “fire” and produce a large voltage spike (the action potential) before return-

ing to the resting potential. The neurons of the brain are connected in a complex network

in which the firing of one neuron can be the stimulus for the firing of another neuron. A

major focus of theoretical neuroscience has been describing neuronal behavior in terms of

this electrochemical potential, both at the single neuron level but more ambitiously, at the

level of multi-neuron networks. In this type of analysis the specific properties of the single

neuron that are most relevant are how the spike of a one neuron alters the electrochemical

potential of another neuron, and how this change in the potential results in a neuronal spike.

The physical connection between neurons occurs in the synapse, a small gap between the

axon, the extension of the cell body of the transmitting neuron, and the dendrite, the exten-

sion of the receiving neuron. The signal is transmitted by the release of a neurotransmitter
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from the axon into the synapse. This neurotransmitter diffuses across the synapse, binds to

a postsynaptic receptor membrane protein on the dendrite, and alters the electrochemical

potential of the receiving neuron.

There is considerable evidence that general anesthetics alter postsynaptic potentials. For

example, it is possible that the anesthetic bifurcation to unconsciousness or the nearly all-or-

none characteristic induction of anesthesia is a type of phase transition of the neural network.

This possibility was first considered by Steyn-Ross et al. Their focus was on the mean voltage

of the soma, or cell body, of neurons. Specifically, they show that the biological change of

state to anesthetic unconsciousness is analogous to a thermodynamic phase change involving

a liquid to solid phase transition. For certain ranges of anesthetic concentrations, their first-

order model predicts the existence of multiple steady states for brain activity leading to a

transition from normal levels of cerebral cortical activity to a quiescent, low-firing state.

In this research [16,39], we present an alternative approach to the possibility of neuronal

network phase transition in terms of neuronal firing rates, using the concept of multista-

bility for dynamical systems. Multistability is the property whereby the solutions of a

dynamical system can alternate between two or more mutually exclusive Lyapunov stable

and convergent states under asymptotically slowly changing inputs or system parameters.

In particular, multistable systems give rise to the existence of multiple (isolated and/or a

continuum of) stable equilibria involving a quasistatic-like behavior between these multiple

semistable steady states [16]. Semistability is the property whereby the solutions to a dynam-

ical system converge to Lyapunov stable equilibrium points determined by the system initial

conditions [46]. Multistability is ubiquitous in biological systems ranging from biochemi-

cal networks to ecosystems to gene regulation and cell replication. Since molecular studies

suggest that one possible mechanism of action of anesthetics is the inhibition of synaptic

transmission in cortical neurons, this suggests that general anesthesia is a phenomenon in

which different equilibria can be attained with changing anesthetic agent concentrations.

Hence, multistability theory can potentially provide a theoretical foundation for describing

general anesthesia.

In this research [16, 39], we present a thorough discussion on biological neural networks.

In particular, the fundamental building block of the central nervous system, the neuron,

is represented as a dynamic element that is “excitable,” and can generate a pulse or spike

whenever the electrochemical potential across the cell membrane of the neuron exceeds a

threshold value. More specifically, a nonlinear discontinuous system is derived for describing

the relationship between the synaptic current and firing rates of excitatory and inhibitory

neural networks. Then, we develop some basic results on differential inclusions which pro-
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vide the mathematical foundation for discontinuous dynamical systems generating Filippov

and Carathéodory solutions. To establish convergence and semistability for discontinuous

dynamical systems we introduce the notion of nontangency between a discontinuous vector

field and a weakly invariant or weakly negatively invariant subset of the level or sublevel sets

of a Lyapunov function. Specifically, to capture the notion of nontangency we introduce the

direction cone of a discontinuous vector field [9].

Next, we use positive limit sets, restricted prolongations, and nontangency to develop

Lyapunov analysis for convergence and semistability to establish multistability for discon-

tinuous dynamical systems. Here, the restricted prolongation of a point is a subset of its

positive prolongation. In particular, we establish connectedness and invariance properties

of restricted prolongations, and give inclusion results for restricted prolongations in terms

of invariant and negatively invariant subsets of the level sets of a Lyapunov function and

its derivative. Then, using nontangency, we obtain Lyapunov results for convergence and

semistability to develop sufficient conditions for multistability for discontinuous dynamical

systems.

Finally, we apply our results to excitatory-inhibitory firing neural models. While there

is ongoing debate as to whether information is encoded by the firing rates (i.e., rate-coding)

of spiking neurons or by precise timing of single neuron spikes (i.e., temporal coding), it

is evident that firing rates do characterize central nervous system activity. Firing rates

are nonnegative entities and the nonnegativity constraint for neural network activity can be

easily incorporated within nonlinear dynamical system theories using solutions of differential

equations evolving in cones [1]. Next, we develop a two-class model for characterizing mean

excitatory and inhibitory synaptic drives to explain the underling mechanism of action for

anesthesia and consciousness. In particular, we demonstrate how the full synaptic drive

firing model can be reduced to a model involving mean excitatory and inhibitory synaptic

drives, and then use our results to show multistability.
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